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Abstract 

Optimal alignment of wind turbines to the wind direction is a crucial condition for the quality 

of power output and for the health of the turbines. Actually, bad alignment can cause degraded 

performances and dangerous loads that can affect, on the long run, the mechanical safety of the 

wind turbine. Supervisory Control And Data Acquisition (SCADA) systems are becoming 

widespread in modern wind energy technology because of the appreciable costs – benefits ratio. 

The common time scale of SCADA, yet, usually is not effective for misalignment diagnosis 

because the wind varies too rapidly. For this reason, misalignment is often diagnosed using ad hoc 

techniques as LIDAR-based or spinner anemometers.  In the present work, it is shown that very 

useful indications for the diagnosis of misalignment can be obtained also from the SCADA data, 

without invoking expensive supplementary control techniques. The method is validated on the data 

set of a wind farm sited in Italy.  
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INTRODUCTION  

 

Modern wind turbine technology is becoming 

increasingly widespread and the economic 

sustainability of wind farms is becoming more and 

more competitive thanks to the scientific and 

technological development. 

Actually, scientific research has a crucial role as 

regards the optimization of wind energy conversion 

for some very basic reason: the nature of the source. 

Wind is very variable in time: it is very challenging 

even to forecast expected power production on the 

day ahead basis [1-4], such that wind can even be 

modelled using chaos theory framework [5-8]. Wind 

is very local and it is very difficult to numerically 

model it, especially in complex terrain [9-13]. When 

wind turbine technology is addressed too, further 

challenges arise: how to model the presence of the 

rotor and how to model the wake effects between 

nearby turbines. This has a considerable influence 

on wind farm design [14 - 16] and, due to the 

economic impact of energy losses caused by wakes, 

it boosts research and development on wake 

modelling and experimental wake assessment [17 -

24]. 

Two objectives, whose line of demarcation is 

fleeting, motivate research and development: 

improving the reliability of simulations, in order to 

optimize the new installations, and improving the 

energy extraction from existing wind farms, through 

early fault diagnosis and performance monitoring. 

For the former and the latter objectives, data are 

the keystone and this explains the diffusion of 

Supervisory Control And Data Acquisition 

(SCADA) systems. Some examples of performance 

assessment can be found in [25-29]. SCADA data 

analysis is very fruitful also for fault diagnosis, even 

though it is commonly considered, by the point of 

view of condition monitoring (CM), as a late stage 

indication. Nevertheless, the improvements in the 

computational techniques as well as the low cost, 

with respect to ad hoc CM instruments as 

accelerometers [30], motivate the research in the 

field of SCADA analysis for fault diagnosis [31-36]. 

The present work deals with a very common [37-

38] phenomenon: bad alignment of wind turbines to 

the wind direction. This phenomenon causes 

producible energy losses and, on the long run, 

exposes the wind turbine to unexpected loads that 

might affect its mechanical safety. Diagnosing 

misalignment is therefore a matter of performances 

as well as a matter of fault prevention. Although 

conceptually the problem is very simple, it is 

commonly believed that diagnosis of misalignment 

requires external experimental set-ups recording 

wind direction and wind turbine alignment at the 
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scales of wind variability. For this reason, LIDAR-

based [39-41] technology and spinner anemometry 

[42-44] are developing faster in wind energy 

industry. This kind of technology, yet, is expensive 

and adopting it for misalignment detection means a 

certain cost for an uncertain outcome. It would be 

desirable to have low, possibly zero, cost 

misalignment diagnosis methods, which could 

provide at least a basis for addressing subsequent 

deeper investigation.  

The present work deals exactly with this issue: a 

method is proposed for the diagnosis of 

misalignment through SCADA data commonly 

available from wind turbines. The direction data 

(“absolute” coming from the nacelle anemometer 

and “actual”, i.e. the nacelle direction) employed for 

this work are actually those coming from the 

common SCADA control system: as argued here 

above, these data are commonly considered too low 

quality to extract information as regards turbine 

misalignment, but in the following it will be shown 

that this is not the case. Actually, the proposed 

method is validated on the data set from a wind farm 

sited in southern Italy and it is shown to be effective 

for underperformance and misalignment diagnosis. 

One key point of the present work is that the data set 

is split in two: the second part of it describes the 

wind farm after the maintenance intervention for 

correcting the alignment of one turbine. Therefore, 

the proposed method is validated against a real test 

case, before and after an intervention, and therefore 

the reliability of the proposed diagnosis approach is 

strongly supported. The structure of the Paper is as 

follows: in Section 2, the wind farm is sketched. The 

method is discussed in Section 3 and the results are 

collected in Section 4. Finally, Section 5 is devoted 

to the conclusions as well as some further direction 

of the present work. 

 

1. THE WIND FARM 

 
The validation case of the present work is a wind 

farm sited in southern Italy, whose layout is 

sketched in Figure 1. The main features of the wind 

turbines are presented in Table 1. This peculiar wind 

farm has been selected for the present work for two 

reasons: the inter-turbine distance is at least of the 

order of 8 rotor diameters and this implies that 

wakes between nearby turbines should not affect 

significantly the capability of optimal alignment to 

the wind. Further, turbine T5, as shall be discussed 

in the following sections, shows a slightly degraded 

power curve. This was inspiration for inquiring a 

possible misalignment to wind direction. 

 

 

Table 1: Main turbine characteristics 

Number of turbines 6 

Rotor diameter 82 meters 

Hub Height 80 meters 

Rated Power 2 MW 

Terrain Flat 

 

 
Fig. 1. The layout of the wind farm 

 
2. THE DATA SET AND THE METHOD 

 

In the present work, the SCADA data from the 

test case wind farm have been appropriately post 

processed for detecting possible non-optimal 

alignment of the wind turbines to the wind direction. 

As a general very brief recap about SCADA data, 

we recall that their usual form is time average, 

minimum, maximum and standard deviation: the 

averaging time scale is commonly 10 minutes and 

the sampling ratio of the control system is usually of 

the order of one or few seconds. SCADA control 

systems record the atmospheric conditions at the 

nacelle (wind intensity and direction), the response 

of the wind turbine (yaw position, pitch angle and so 

on), the main information about the conversion of 

wind kinetic energy into exploitable form (active 

and reactive power and so on), possibly 

temperatures and pressure at relevant points of the 

wind turbine. The rationale on which the theoretical 

picture of wind turbines is translated into 

prescriptions for analysing operating parameters is  

IEC 61400 [45], provided by the International 

Electrotechnical commission. Actually, the first tool, 

used in this work for detecting an underperformance 

of a wind turbine that might be caused by 

misalignment, is the power curve analysis as IEC 

suggests. 

The data set employed for the present work has 

been collected during the year 2016 and it has been 

filtered on the regime of simultaneous power output 

production from each turbine of the wind farm. This 

data set therefore describes the wind farm producing 

output in unison and this is a crucial point for the 

formulation of the proposed method. The SCADA 

channels employed for the present work are nacelle 
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wind speed, power output, wind direction as 

recorded at the nacelle, nacelle position. Another 

key point, as anticipated in the Introduction section, 

is that the data set is split in two: before and after an 

intervention to one wind turbine, for correcting its 

alignment to the wind. The dimensions of the two 

data sets are respectively 19000 and 8616 

measurements. 

As regards performance analysis, the power 

curve is plotted, as shown in the next section, by 

averaging on turbine nacelle wind speed intervals 

having 0.5 m/s amplitude.  

Once a slight underperformance of turbine T5 is 

highlighted, at the same wind conditions of the other 

turbines, the analysis is focused on the 

misalignment. Having at disposal two direction 

measurements at the nacelle from the SCADA 

control system, one can compute the relative wind 

direction for each time step, i.e. the discrepancy 

between the wind direction at the nacelle and the 

nacelle position. At this point, comparing one 

turbine against the other is fundamental and that is 

why the data set has been synchronized on the 

request that each turbine was in productive phase. 

For each time step, the relative wind directions of 

the turbines are averaged, providing a reference for 

the farm of the amount of mean misalignment. 

Subsequently, for each time step the discrepancy 

between the relative wind direction of each turbine 

and the farm average is computed. One ends up with 

a data set of discrepancies. Here statistics comes at 

hand: the simplest, yet powerful, thing that one can 

do is observing the distributions of the discrepancies 

for each turbine and comparing them. Since 

everything starts with relative measurements and the 

turbines are the same identical model, it is expected 

that they respond similarly to the wind. If it is very 

evidently not, this is a signal that the vane of a wind 

turbine could be damaged and measures not 

optimally the wind, forcing the wind turbine to align 

according to biased measurements. In the following 

Section 3, it will be shown that this is exactly what 

happens to turbine T5 and it will be shown that, after 

the intervention to this turbine, the proposed 

methods don’t highlight it as anomalous anymore. 

This is a powerful validation of the approach, 

against a real test case. 

 
3. THE RESULTS 

 

Each turbine has been compared against the 

others. In the following Figure 2, the power curves 

of turbines T5 and T1 are compared before the 

intervention at turbine T5. From here on, this data 

set shall be labelled as D1, and the one after the 

intervention as D2. It arises that, at the same 

conditions of nacelle wind speed, turbine T5 

considerably underperforms with respect to turbines 

T1.  

 
Fig. 2. Power curves of turbines T5 and T1. D1 data 

set, 0.5 m/s nacelle wind speed interval. 

 
To go beyond the qualitative picture of Figure 2 

which takes into account only two turbines for the 

sake of plot readability, the following procedure has 

been adopted: the power curve, averaged on nacelle 

wind speed intervals of 0.5 m/s, has been computed 

for all the wind turbines of the wind farm. These six 

curves have been averaged for each wind speed 

interval, in order to provide an average reference; 

subsequently, for each nacelle wind speed interval, 

the percentage variation of each wind turbine against 

the average has been computed. Further, in order to 

obtain a unique indicator, the percentage 

displacements for each turbine have been averaged. 

In Figure 3, the results are shown for the D1 data set, 

i.e. before the intervention. Using this indicator, it 

arises that turbine T5 negatively deviates from the 

wind farm average for approximately 1.5 standard 

deviations. Sideways, this  so considerable amount 

of underperformance of turbine T5 supports the 

suspicion that misalignment is a possible cause.  

 

  
Fig. 3. Average percentage power deviations with 

respect to the wind farm average. D1 data set. 

 

In the following Figures 4 and 5, for respectively 

turbines T5 and T1 and data set D1, the difference in 

population, with respect to farm average, is plotted 

against intervals of relative wind direction. In other 

words, the plots show if the relative wind direction 

distributes for each turbine similarly with respect to 

the average behaviour of the wind farm. Since the 
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wind turbines are the same model and sufficiently 

far the one from the other so that wakes are not 

expected to alter the alignment behaviour, the 

distribution should to be similar for the various 

turbines. Figures 4 and 5 show that this is not the 

case. It shows that exactly the opposite happens: the 

relative wind direction for turbine T5 is far more 

frequently very low, with respect to the other 

turbines. But this, as said before, is not realistic: 

there is no reason why it should be like that. This 

phenomenon should instead be interpreted as a 

problem to the vane of turbine T5. It is as if the 

vane, being damaged, registers an anomalously good 

alignment of the wind turbine to the wind direction 

and therefore sends to the control system wrong 

inputs. And then the wind turbine obeys these wrong 

inputs and underperforms. Further, this behaviour is 

dangerous by the point of view of mechanical loads, 

affecting the turbine, if it regulates according to 

wrong inputs. The histograms in Figures 4 and 5 are 

expected to reasonably oscillate around the 0, while 

instead they are sharply peaked positively and 

negatively. For this reason, in order to quantify the 

anomaly, the size of the longest interval of the 

histogram having the same sign is computed for all 

the wind turbines. For the D1 data set, it is reported 

in Figure 6. It arises that, due to the bias of turbine 

T5, all the wind turbines show very high values. But 

further, by comparing them, it arises that in any case 

turbine T5 is the only turbine deviating from the 

farm average more than 1.5 standard deviations. 

This is a further argument supporting the 

identification of turbine T5 as anomalous. 

 
Fig. 4. Difference in distribution of relative wind 

direction with respect to the farm average, T5. D1 

data set. 

 

 
Fig. 5. Difference in distribution of relative wind 

direction with respect to the farm average, T1. D1 

data set. 

 

 
Fig. 6. Size of the longest interval of the histogram 

of relative wind direction (w.r.t. to farm average) 

having the same sign. D1 data set. 

 
Summarizing, the method proposed in Section 2 

has proven to be very effective in highlighting 

misalignment of turbine T5 and this has been 

particularly precious not only for remedying 

underproductions, but also in perspective of the long 

term health of the wind turbine. The method has 

actually provided non-ambiguous guidelines for 

intervention on T5 wind turbine and this can be 

crosschecked by analysing the D2 data set 

describing the wind farm after the maintenance 

intervention at turbine T5. In Figure 7, the power 

curves of turbines T5 and T1 are shown. Comparing 

against Figure 2, it arises that the performances of 

turbine T5 and T1 are much more similar than 

before the intervention. The underperformance of 

turbine T5 is gradually disappearing, as it should. 

This is supported by computing also the 

corresponding of Figure 3, which is reported in 

Figure 8. It arises that now turbine T5 deviates less 

than one standard deviation with respect to the 

average of the wind farm. 
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Fig. 7. Power curves of turbines T5 and T1. D2 data 

set 

 
Fig. 8. Average percentage power deviations with 

respect to the wind farm average. D2 data set. 

 
Figures 9 and 10 show the same histograms as 

Figures 4 and 5, but on the D2 data set. It arises that, 

after the intervention at turbine T5, the distributions 

of relative wind direction (with respect to farm 

average) for turbines T5 and T1 are much more 

similar in shape. They oscillate around the 0, as they 

should, and they are not left (or right, respectively) 

peaked as Figures 4 and 5 are. This strongly 

supports the reliability of the proposed method for 

misalignment diagnosis: in other words, when one or 

more turbines are misaligned (against a wind farm 

reasonably aligned in average), the misaligned 

turbines are highlighted as anomalous. When the 

anomaly is recovered, the output of the method 

registers a homogeneous behaviour along the wind 

farm. This can be seen also computing the 

corresponding of Figure 6, which is reported in the 

following Figure 11. The average size of intervals 

having the same sign is of the order of one third with 

respect to the case of D1 data set. Further, T5 no 

longer peaks for deviation with respect to the rest of 

the wind farm. This supports the picture that, after 

the maintenance, the alignment behaviour and the 

performances of turbine T5 are returning back to be 

consistent with the average of the wind farm. 

 

 
Fig. 9. Difference in distribution of relative wind 

direction with respect to the farm average, T5. D2 

data set. 

 
Fig. 10. Difference in distribution of relative wind 

direction with respect to the farm average, T1. D2 

data set. 

 

 
Fig. 11. Size of the longest interval of the histogram 

of relative wind direction (w.r.t. to farm average) 

having the same sign. D2 data set. 

 

4. CONCLUSION AND FURTHER 

DIRECTIONS 

 
In the present work, a method, based on SCADA 

data analysis, has been proposed for the diagnosis of 

misalignment of wind turbines to the wind direction. 

As discussed in the Introduction, this work is 

motivated by the fact that misalignment is a very 

common cause of energy losses, possibly also 

affecting the long term health of wind turbines, but 

its diagnosis is somehow demanding. Actually, due 

to the typical time scale of variability of the wind 
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and of the response of wind turbines, misalignment 

is often diagnosed using LIDAR or spinner 

anemometry. These techniques have a high certain 

cost, against an uncertain outcome. For these 

reasons, employing SCADA for misalignment 

diagnosis, or for at least some instructive guidelines 

for further intervention, would be very precious and 

money saving. In this work, it has been shown that 

this is indeed possible on the test case of a wind 

farm sited in Italy. Using standard power curve 

techniques, an underperforming turbine has been 

identified. Subsequently, the statistical distribution 

of the relative wind direction (i.e. the difference 

between the wind direction measured at the nacelle 

and the nacelle position) for each turbine has been 

analysed and compared for the various turbines. It is 

shown that the underperforming turbine displays an 

anomalous distribution of relative wind direction, 

with respect to the rest of the farm. This is not 

realistic, because the wind turbines are identical and 

the way the nacelle follows the wind direction 

should be similar, especially on the vast statistical 

basis employed for the present work. Therefore, one 

argues that the underperforming turbine has a 

problem at the vane, that registers an anomalously 

good alignment to the wind direction and therefore 

sends wrong inputs to the central control system. 

This explains the underperformance of the wind 

turbine. This intuition, arising from the proposed 

diagnosis method, has been crosschecked against the 

reality because the data set at disposal is split in two: 

before and after the maintenance intervention at the 

underperforming turbine. After the maintenance 

intervention, the anomalies highlighted by the 

proposed method are shown to be negligible. This is 

indeed a key point because the approach is therefore 

supported as being reliable and responsive and this 

is exactly what one would expect from a diagnosis 

procedure.  

In conclusion, the proposed method allows the 

diagnosis of possible misalignments of wind 

turbines to the wind direction by employing at zero 

cost (that is, without invoking further ad hoc 

measurements campaigns) the source of information 

available from the usual SCADA control systems. 

This is very useful for preventing considerable 

energy losses, but also for safeguarding the long 

term health of the wind turbines. 

A very interesting further direction of this work 

would be pairing the proposed method to the 

information coming from Condition Monitoring 

systems, where available. Actually, having at hand 

signals from accelerometers at meaningful points of 

the wind turbines would allow to understand the 

mechanical consequences, in terms of loads [46], of 

the misalignment. Further, it would be in perspective 

very challenging to upgrade from a statistical 

treatment of misalignment to a local analysis, by the 

point of view of time and space. This requires the 

understanding of the chaotic fluctuations of wind 

speed on a local scale [1-9], but also of the response 

of the technology (i.e. the wind turbines), taking into 

account that clusters might matter more than 

individual turbines [20, 21].  
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